Predictive analytics is all about foreseeing the future and making smarter and faster business decisions. Business analytics is often characterised by three levels/echelons representing the hierarchical nature of the term—descriptive, predictive, and prescriptive. Organisations usually start with descriptive analytics, then move into predictive analytics, and finally reach prescriptive analytics. Learn predictive analytics with Seven Learning’s course Predictive analytics: Data Mining, Machine Learning and Data Science for Practitioners. The course has well descriptive interactive lessons containing pre and post-assessment questions, knowledge checks, quizzes, flashcards and glossary terms to get a detailed understanding of predictive analytics.
Lessons 1: Introduction
Lessons 2: Introduction to Analytics
- What’s in a Name?
- Why the Sudden Popularity of Analytics and Data Science?
- The Application Areas of Analytics
- The Main Challenges of Analytics
- A Longitudinal View of Analytics
- A Simple Taxonomy for Analytics
- The Cutting Edge of Analytics: IBM Watson
Lessons 3: Predictive Analytics and Data Mining
- What Is Data Mining?
- What Data Mining Is Not
- The Most Common Data Mining Applications
- What Kinds of Patterns Can Data Mining Discover
- Popular Data Mining Tools
- The Dark Side of Data Mining: Privacy Concerns
Lessons 4: Standardised Processes for Predictive Analytics
- The Knowledge Discovery in Databases (KDD) Process
- Cross-Industry Standard Process for Data Mining (CRISP-DM)
- SEMMA
- SEMMA Versus CRISP-DM
- Six Sigma for Data Mining
- Which Methodology Is Best?
Lessons 5: Data and Methods for Predictive Analytics
- The Nature of Data in Data Analytics
- Pre-processing of Data for Analytics
- Data Mining Methods
- Prediction
- Classification
- Decision Trees
- Cluster Analysis for Data Mining
- k-Means Clustering Algorithm
- Apriori Algorithm
- Data Mining and Predictive Analytics Misconceptions and Realities
Lessons 6: Algorithms for Predictive Analytics
- Naive Bayes
- Nearest Neighbour
- Similarity Measure: The Distance Metric
- Artificial Neural Networks
- Support Vector Machines
- Linear Regression
- Logistic Regression
- Time-Series Forecasting
Lessons 7: Advanced Topics in Predictive Modelling
- Model Ensembles
- Bias–Variance Trade-off in Predictive Analytics
- Imbalanced Data Problems in Predictive Analytics
- Explainability of Machine Learning Models for Predictive Analytics
Lessons 8: Text Analytics, Topic Modeling and Sentiment Analysis
- Natural Language Processing
- Text Mining Applications
- The Text Mining Process
- Text Mining Tools
- Topic Modeling
- Sentiment Analysis
Lessons 9: Big Data for Predictive Analytics
- Where Does Big Data Come From?
- The Vs That Define Big Data
- Fundamental Concepts of Big Data
- The Business Problems That Big Data Analytics Addresses
- Big Data Technologies
- Data Scientists
- Big Data and Stream Analytics
- Data Stream Mining
Lessons 10: Deep Learning and Cognitive Computing
- Introduction to Deep Learning
- Basics of “Shallow” Neural Networks
- Elements of an Artificial Neural Network
- Deep Neural Networks
- Convolutional Neural Networks
- Recurrent Networks and Long Short-Term Memory Networks
- Computer Frameworks for Implementation of Deep Learning
- Cognitive Computing
Appendix A: KNIME and the Landscape of Tools for Business Analytics and Data Science
- Project Constraints: Time and Money
- The Learning Curve
- The KNIME Community
- Correctness and Flexibility
- Extensive Coverage of Data Science Techniques
- Data Science in the Enterprise
Appendix B: Videos
- Introduction to Predictive Analytics
- Introduction to Predictive Analytics and Data Mining
- The Data Mining Process
- Data and Methods in Data Mining
- Data Mining Algorithms
- Text Analytics and Text Mining
- Big Data Analytics
Hands-on LAB Activities
Introduction to Predictive Analytics and Data Mining
- Creating a Decision Tree in Python
- Creating a Decision Tree in KNIME
Data and Methods for Predictive Analytics
- Running k-Means Clustering Algorithm in KNIME
Algorithms for Predictive Analytics
- Using the k-Nearest Neighbour Algorithm
- Using ANN and SVM for Prediction Type Analytics Problems
- Implementing Linear Regression in Python
- Implementing Linear Regression Model in KNIME
Advanced Topics in Predictive Modeling
- Showcasing Better Practices With a Customer Churn Analysis
Text Analytics, Topic Modeling, and Sentiment Analysis
- Performing Topic Modeling
- Performing Sentiment Analysis
Exam FAQs
FAQ's are not Available for this course.Summary
Standard:
Predictive analytics
Lessons:
12+ Lessons
Delivery Method:
Online
Language:
English